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DARPA Grand Challenge (2004-2007)
o competition for autonomous vehicles

IBM’s Watson (2011)
e natural language processing and machine learning on
unstructured data

Google Brain (2012)
e recognize higher-level concepts from unlabeled images

Google’s Alpha Go (2016)
» plays Go on level of best professionals



Cloud for Analytics
vs. Analytics for Cloud

Cloud technologies in support of (big) data
analytics

- enable virtualization, scaling,
pay-as-you-go, multi-tenancy

- new computing paradigms, online algorithms,
stream processing

- platforms

Analytics in support of engineering, operations of
cloud technologies and services

- this talk



The Role of Analytics in Systems
Engineering and Operations

e What are the benefits and the costs
of applying analytics methods?

* For which cases outperform analytics method
traditional methods or provide new capabilities?

e How can we integrate analytics into
an overall engineering methodology?

» Experience shows that both data science and
domain knowledge needed.

- Need to train engineers in data science.
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Enablers
e large amounts of counters, statistics, event streams

e technology has progressed to enable real-time
storage, processing at source

e availability of platform technology

Need

o complexity makes traditional methods infeasible
statistical learning creates a system model through

observation
without detailed knowledge of system architecture and

its functional components



Example: Real-time Analytics for Network Management
Collaboration between Ericsson Research, KTH, SICS

Analytics
In-Network Analytics

Telecom Clouds

REALM
Real-time Analytics
for Cloud Network Management

Real-time Management
Service Assurance

Anomaly Detection



Real-time Prediction of Service Metrics
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The Problem

KV (S,): Client e KV (S,): Cluster
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Y: service-level metrics X: device statistics

Video-on-demand (VoD)

e video streaming (VLC)

* video frame rate, audio buffer
rate, network read rate

KV-store

* response time

CPU load, memory load,
#network active sockets,
#context switching,
Hprocesses, etc..

Find M: X— Y that predicts Y in real-time.




Real-time Analytics for Management

Goal:
* Predicting Service Metrics from Device Statistics in real-time
Approach:

e Statistical learning, online methods,
distributed learning on compute servers and network nodes;
Experimentation on testbed

Benefits of approach:

e service-agnostic methodology, scalablity, ...
Challenges:

* Large feature set (>1k features)

e Concept drift through changing load patterns and
resource management functions



Device Statistics X

Linux kernel statistics X
— Features extracted from /proc directory

proc

— CPU core jiffies, current memory usage, virtual memory statistics,
#processes, #blocked processes, ...

— Some 4000 metrics
System Activity Report (SAR) X,
— SAR computes metrics from /proc over time interval
— CPU core utilization, memory and swap space utilization, disk I/O statistics, ...

— Some 840 metrics

Xoroc CONtains many OS counters, while X, does not

For model predictions, focus on numerical features
Sensors read statistics 1-2 times per sec.



Service Metrics Y

@,3 Video-on-Demand
* Video streaming service based on VLC media player.

* We instrumented the VLC software to capture underlying
events to compute the metrics.

* Metrics:
video frame rate, audio buffer rate, RTP packet rate, ...

& KV-storage system

 Voldemort p2p system
* Metrics:
response time

Metrics captured 1-2 times per sec.



File system
access

Server machine

Network
File System

X, Sensor

Server machine

Network
File System

X, Sensor
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Web Server
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Server machine
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VoD Load
generator

M: X;..X_ — Y...Y, In-Network Computation

X:: OS kernel stats



Client machine

Key-value
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Batch Learning on Traces

X-Y trace J

70% 30%

Linear regression

Lasso regression Train set
Regression tree Test setJ

Random forest Prediction accuracy
\ ly, €, = Iyi_j\’il
MeaSUFeNodel . .
Training Time J_ training Evaluation Normalized Mean
ﬂ Absolute Error
1 m
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Prediction Methods

Using traces

)

Batch learning

| > | Online learning | || >

Using live statistics

)

Real-time
learning

Increased difficulty and realism
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Feature Set Reduction

* Exhaustive search is infeasible
—Requires O(2?) training executions (P ~ 5000)
* Option: forward stepwise feature selection

—Heuristic method O(p*)training executions
—Incrementally grows the feature sets
* Reduces feature set from 5000 to 12 features



Effect of Feature Set Reduction

Video Audio
Feature set
Load pattern NMAE (%) | Train (sec) | NMAE(%) | Train (sec)
Full 12 > 59000 32 > 70000
Periodic

“Minimal” 6 862 22 1600

Full 8 > 55000 21 > 75000
Flash
“Minimal” 4 778 15 1750

“Minimal” feature set
- improves prediction accuracy over full set, feature set selected by experts
- reduces training time

wmaE = L(L Sy — i)




Real-time Model Computation

and Evaluation
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A Visualizing Output from Analytics Engine

Audio buffer rate Video frame rate

Network read rate

(buffers/sec) (frames/sec)

(operations/sec)

Real-time Predictions of Service Metrics from Device Statistics
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Evaluation for Real-time Learning

Load pattern

Video-on-demand (VoD)

KV-store

Video frame rate | Audio buffer rate

Response time

Periodic B 3.6% B 1a% & 7%
Flashcrowd &5.6% & 11% & 6%
Periodic

+ &w 8% & 29% & 11%
Flashcrowd & &7 &

With virtualized infrastructure:

~ same results

End-to-end service along network path: +10%




Results to Date

* Predicting service metrics for cluster-based services
s feasible:

— video streaming, key-value store
(NMAE below 14% for video, audio frame rates, etc.)

* Feature set reduction on X_,, reduces model computation
time and improves accuracy.

* Real-time analytics engine

— allows to observe effect of system perturbation on service quality;

— serves as building block for service quality assurance system,
anomaly detection system.



':,z'::c';wa*f for Clouds

Super
sarning

learning

dim reductio

Real-time Analytics Functions

service quality
service capacity
energy consumption
control actions
detect anomalies

resource schedulers
adjust controller
parameters

detect anomalies
find faults
corrective action
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The availability of operational and historical data
and recent technology advancement
make real-time analytics for clouds possible.

Analytics methods create models from
observations, without knowing detailed
architectural and functional model of a system.

Training of engineers is key.

24
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We demonstrated the feasibility of estimating service metrics
in real-time.

Promising application of real-time analytics for engineering
and operation of cloud services:

» Estimation of KPIs and control parameters;

» Quality assurance and anomaly detection/root-cause
analysis.

Major challenges remain:
» scalability, in-network computation

e integrating analytics into an overall engineering
methodology.
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